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SUMMARY

The flow of an electrically conducting incompressible viscous fluid in a plane channel with smooth
expansion in the presence of a uniform transverse magnetic field has been analysed. A solution technique
for the governing magnetohydrodynamic equations in primitive variable formulation has been developed.
A co-ordinate transformation has been employed to map the infinite irregular domain into a finite regular
computational domain. The governing equations are discretized using finite-difference approximations
in staggered grid. Pressure Poisson equation and pressure correction formulae are derived and solved
numerically. It is found that with increase in the magnetic field, the size of the flow separation zone
diminishes and for sufficiently large magnetic field, the separation zone disappears completely. The peak
u-velocity decreases with increase in the magnetic field. It is also found that the asymmetric flow in a
symmetric geometry, which occurs at moderate Reynolds numbers, becomes symmetric with sufficient
increase in the transverse magnetic field. Thus, a transverse magnetic field of suitable strength has a
stabilizing effect in controlling flow separation, as also in delaying the transition to turbulence. Copyright
© 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of laminar flow in tubes or channels with constriction or expansion has received
considerable attention in recent years, in view of engineering applications. Lee and Fung [1]
obtained numerical solution for flow in a tube with constriction at low Reynolds number. Lee [2]
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investigated steady laminar flow through a variable constriction in a vascular tube. Cheng [3]
investigated steady viscous flow through a channel with symmetric cosinusoidal constrictions on
both the walls at the same location. Vradis et al. [4] studied steady incompressible viscous flow
in a channel with local constriction having the shape of a Gaussian distribution. Mahapatra
et al. [5] studied flow separation in a constricted channel without assuming flow symmetry
about the channel centreline. They observed that with increasing Reynolds number, the flow
through a channel with smooth symmetric constriction may become asymmetric about the channel
centreline.

For the case of symmetric sudden channel expansion, at low Reynolds numbers, there is no
separation and the flow is symmetric. As the Reynolds number increases, the flow separates
from the walls with the formation of recirculation zones of unequal length and the flow becomes
asymmetric. With further increase in Reynolds number, the asymmetric flow separates from one of
the walls and gets attached to the other. This was found by several authors like Durst et al. [6, 7],
Cherdron et al. [8], and by Fearn et al. [9]. As the Reynolds number increases, the asymmetry
remains in the flow, even up to turbulent flow conditions as observed by Restivo and Whitelaw
[10]. This phenomenon is referred to in the literature as the ‘Coanda effect’. Instabilities and
bifurcations of channel flows have been investigated by Sobey and Drazin [11].

Recently, Pramanik et al. [12] numerically studied viscous flow through a symmetrically
expanded channel. They found that in the case of smooth local expansion, the flow becomes
asymmetric about the channel centreline with increasing Reynolds number.

The control of boundary layer separation is of much practical interest in aerodynamics and in
physiological flows. Several methods have been developed for the purpose of artificially controlling
the behaviour of the boundary layer. The aim of these methods is to alter and organize the
whole flow in a desired direction by influencing the structure of the boundary layer [13]. Fluid
flow separation and various boundary layer control techniques were described in Gad-el-Hak and
Bushnell [14]. The application of magnetohydrodynamic (MHD) principles is yet another method
for affecting the flow field in a desired direction by altering the structure of the boundary layer.
Recently, Midya et al. [15] investigated MHD viscous flow in a channel with constriction. They
found that the flow separates downstream of the peak of the constriction and that, with increase
in magnetic field the flow separation zone diminishes in size. For sufficiently large magnetic field,
the separation zone disappears completely.

Recently, stability and transition to turbulence in plane channel flow have been investigated
in several works. Stability thresholds of streamwise streaks and transition to turbulence in plane
channel flow were investigated by Reddy et al. [16]. Direct numerical simulation was applied by
Krasnov et al. [17] to investigate instability and transition to turbulence of flow of an electrically
conducting incompressible fluid between two parallel unbounded insulating walls affected by a
wall-normal magnetic field (the Hartmann flow). The transition to turbulence that arise in MHD
flows in ducts was investigated experimentally by Moresco and Alboussiere [18].

In this paper viscous flow of an electrically conducting incompressible fluid in a channel with a
symmetric smooth expansion is studied numerically without assuming flow symmetry with respect
to the channel centreline. The flow is permeated by uniform magnetic field applied normal to
the plane of the channel wall. A co-ordinate transformation has been used to map an infinite
irregular domain into a finite rectangular computational domain. The governing equations have
been discretized on a staggered grid using a finite-difference method, popularly known as MAC
method [19,20]. It is found that flow separation may be controlled by applying a transverse
magnetic field of suitable strength.
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2. GOVERNING EQUATIONS

We consider the two-dimensional flow of a homogeneous Newtonian incompressible viscous
electrically conducting fluid in an infinitely long parallel plate channel, having symmetric smooth
expansions on both the plates at the same location (as shown in Figure 1). Let ¢ be the electrical
conductivity and p the density of the fluid. Initially, the fluid is at rest everywhere within the
channel except at an infinite distance upstream of the expansion where a Hartmann profile is
prescribed.

Let (x*, y*, z*) be the Cartesian co-ordinates of any point in the flow domain, where the x*-axis
is along the bottom plate and the y*-axis is normal to both the plates. Let u*,v* be the velocity
components along the x* and y* directions, respectively, p* the pressure, U/4 be the centreline
velocity for a parallel flow in the channel far upstream of the expansion, and v the kinematic
viscosity. A uniform magnetic field By is imposed along y* axis (as shown in Figure 1).

The governing continuity equation can be expressed as

ou* N ov*
ox*  dy*

0 6]

Taking into account the Lorentz forces due to MHD interactions, the simplified momentum equa-
tions in the x* and y* directions may be expressed as

owt L out L out 10p* (62u* azu*)_aBgu* .

+u v —=—— +v +
ot* Ox* Oy* p Ox* ox*2  Qy*? p

and

vt _ovt vt 1ap* Fvr or
- ( ) 3)

+u* +v* =—- —t+t—
or* ox* Oy* p Oy* ox*?  oy*?
respectively, where the induced magnetic field is assumed to be negligible in comparison with
the external magnetic field, which is justified for MHD flow at small magnetic Reynolds numbers
[21]. In fact, such an assumption is valid for flow of liquid metals (e.g. mercury or liquid sodium).
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(6]
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Figure 1. A sketch of the physical problem.
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Further, electrical conductivity ¢ of the fluid is assumed constant. (For mercury, ¢=107>e.m.u
and for liquid sodium, ¢=10"%e.m.u.) It is also assumed that the external electric field is zero
and the electrical field due to polarization of charges is negligible.

Introducing the following non-dimensional variables:

_ t*_U x* y* u* v p

vV=—, =
P=07

t 5 TR
h* h* h* U U

“4)

the above magnetohydrodynamical equations for incompressible viscous electrically conducting
fluid flow in non-dimensional form become

6u+6v_ 5)
oX oY
au+au2+auv op | 52u+82u P ©
T LY L LT DR Ve
ot 0X oY 0X Re\0X2 0Y2) Re
6_v+6u_v+6_vz_ a_p_i_L 62_U+62_U (7)
ot 0X dY  dY Re\ax? oay2

where Re(=Uh*/v) is the Reynolds number, M (= Boh*+/c/pv) is the Hartmann number, and i*
is the width of the straight part of the channel. The parameter M?/Re is normally called magnetic
interaction parameter or Stuart number. It may be noted that the above equations are expressed
in a conservative form using the continuity equation.

2.1. Boundary conditions

The streamwise and transverse velocity components should be zero at the rigid walls (no-slip
condition). At the inlet and outlet boundaries, the Hartmann velocity profile [21] is prescribed.
On the upper (Y =F>(X)) and lower (Y = F(X)) walls of the channel, the no-slip boundary
conditions are

u=0, v=0 at¥=F(X),F(X) (8)

The functions Fj(X) and F>(X), which represent the shapes of the lower and upper walls of the
channel (as shown in Figure 1), are given by

1h(1—|— (”X» IX|<X
—— cos| — ) ):1XI1<Xp
Fi(X)=1 2 Xo

0:1X[=Xo

©
1 X

1+=h (1+cos (—)) X< X0
(X)) = 2 Xo

11X [=Xo

Here % is an expansion parameter. The inlet flow upstream and the outlet flow far downstream
of the expansion are assumed to be the Poiseuille flow in the absence of a magnetic field and
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the Hartmann flow, [22], in the presence of magnetic field. In particular, we have the following
conditions at inlet (X =—o00) and at the outlet (X =+00) boundaries, as shown in details in [15],

u=Y-Y>* for M=0
cosh(M/2) —cosh(M (Y — 1)) (10)

U= for M #0
8sinh?(M /4) #

2.2. Initial condition

The initial condition is that there is no flow inside the flow domain, while on the other hand, the
parabolic velocity profile is prescribed at the inlet boundary in the case of M =0 and the Hartmann
profile is prescribed at the inlet boundary in the case of M #0. Physically, this implies the flow is
approaching the expansion gradually.

3. CO-ORDINATE TRANSFORMATION

Application of the boundary conditions at the various boundaries is a difficult task. It is somewhat
unsatisfactory to simply impose the far-field boundary conditions at large finite distances, since,
for flows with increasing Reynolds number, the disturbances created by the irregular shape are
sizable even at far downstream. The flow is expected to become smoother far away from the
expansion and the grid should necessarily be more refined near the expansion than that far away
from it. Again, the prescription of conditions at boundaries not conforming to the co-ordinate lines
leads to severe interpolation errors. For these reasons, a transformation is introduced to map the
infinite irregular physical domain to a finite rectangular computational domain. The co-ordinate
transformation used in this study is
Y- Fi(X)
x =tanh(kX), y=————— (11)
F(X)—Fi(X)
where k is a parameter that controls the grid distribution in an efficient manner. The grids in
the physical plane are dense near the origin due to the nature of the function tanh(kX). The
transformation defined in (11) transforms the curved upper boundary Y = F>(X) into the straight
line y=1, the curved lower boundary Y = F;(X) into the straight line y=0 and the outflow and
inflow boundaries at X =400 into x==+£1.
Using the chain rule of differentiation, the continuity equation (5) changes to

1 ov
k(1— ——kl— G - =0 12
(=) 70—k =G, y) TR A oy (12)

and the momentum equations ((6) and (7)) transform to

ou L )6 2 k(1 —x)G( ) 2 1 Juv
- — —x X - - @
o ox oy TR A ay
0 02u
:—k(l—xz)a—p—l—k(l— HG(x, y)—+— [kz(l x )2
X
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where

F(X)=fi(x), F/(X)=k(1—x?)f/(x)
F/'(X) = k(1 =x*)[—2kxf{ (x) +k(1=x?) f/'(x)], i=1,2

YA+ (1= f) W)+ (=) () (15)
G 5 - ) H ) =
T = A Y e
_L@-f 1 (l—i-x) B
= am i) T

and the prime denotes derivative with respect to the argument.
The boundary conditions in the transformed co-ordinate system are

u=0, v=0 aty=0,1 (16)
The inlet velocity profile at x =—1 and the outlet velocity profile at x =41 are both given by

u=y—y2 for M=0

cosh(M /2) —cosh(M (y — 1)) 17
u= — for M #0
8sinh“(M/4)
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4. NUMERICAL SOLUTION

Solution of the governing equations under appropriate initial and boundary conditions offers the
prospect of predicting laminar separated flow which, in view of their complex structure, is beyond
the scope of analytical treatment. We solve them numerically in the computational plane employing
a finite-difference technique on staggered grid. To express the derivatives in the transformed
governing equations in terms of finite-difference formula, a suitable grid arrangement is needed.

4.1. Type of grid used

Typical grid distributions in the physical plane for the symmetric expansion are shown in Figure 2.
In this plane, grids are non-uniformly spaced. The transformation defined in Section 3 enables one
to space grid points uniformly in the computational plane. In the new system of co-ordinates (x, y),
a uniformly spaced rectangular grid is superimposed on [—1, 1] x [0, 1] computational domain. All
the computations have been carried out in this rectangular domain. In the present method one type
of staggered grid, popularly known as MAC cell [19], is used. In this type of grid arrangement, the
velocities and the pressure are evaluated at different cell positions as shown in Figure 3: u-velocity
at the middle of the vertical sides of the cell, v-velocity at the middle of the horizontal sides, and
pressure at the cell centre.

4.2. Finite-difference representation

It may be noted that the continuity equation for an incompressible flow contains only the velocity
components and no direct link with the pressure is available. The primitive variables (u, v, p) for
two-dimensional flow in non-staggered conventional grids get coupled to every alternate node if
centred differences are used for representing the derivatives, giving rise to ‘checker-board effect’
[20]. On the other hand, the use of staggered grid permits coupling of the u, v and p solutions at
adjacent grid points, thus preventing the appearance of oscillatory solutions, particularly for the
pressure p.

The finite-difference equations are derived in three distinct types of cells viz., (i) continuity
cell, (ii) u-momentum cell, and (iii) v-momentum cell [23], respectively, for the three governing
equations. The time derivative terms in all the equations are differenced according to the first-order
accurate, two-level, forward-time differencing formula. The convective terms in the momentum
equations are differenced with a hybrid formula consisting of central differencing and second-order

=
|
—_

-15 -10 -5 0 5 10 15

Figure 2. A typical grid alignment in the physical plane for the symmetric expansion.
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Figure 3. Arrangement of dependent variables in a typical MAC cell.

upwinding [24]. The diffusive terms are differenced using a second-order accurate, three-point,
central-difference formula. The source terms are centrally differenced keeping the position of the
respective fluxes at the centres of the control volumes.

With t =ndt, x=idx, y=jdy the difference forms of p,u, v are expressed as

px.y,)=pj;, ulx,y,t)=u; and v(x,y,1)=v}

where superscript n refers to the time direction, subscripts i and j refer to the spatial directions,
Ot is the time increment and dx, 0y are the length and width of the control volumes. Discretization
of the continuity equation (12) at the (i, j)th cell takes the form

n n
¢ —Ube 1 vij_vij—lzo (18)

oy +f2(XIi)—f1(XZi) oy

where the quantities x/;, yl;, ui and uyc are defined as

n n
Uij =i

2 Ut
—k(1=xI7)G(xl;, yl})
ox

k(1 —xI?)

X oy
xip=xi——. Yj=yj——
e =025l +ul_y +ul i +uli ) (19)

Here (x/;, ylj) and (x;, y;) are the co-ordinates of the cell centre and right top-corner of the cell,
respectively, subscripts tc and bc correspond to top and bottom middle positions of the continuity
cell, respectively. Thus, u. and up. stand for u-velocities at the top and bottom middle positions
of the continuity cell, respectively. Considering the source, convective and diffusive terms at the
nth time level, the momentum equation in the x-direction, Equation (13) may be rewritten in
finite-difference form as

n+1 n n n
u:k(l_x?)m_{_k(l_ﬁ)(;(x. yl4)pt_pb +Ucd” (20)
ot ! Ox ! TSy Y
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where p, pp, and Ucdl’-‘j are defined as follows:

pe=025(p}+ P}y + Pl P j1) @D

pb=0.25(pf’j+pf’+1j+pf’j_1+I’?+1j—1) (22)
1 M?

Ucd;’j = Elefu?j —Con u:’j — Euf’] (23)

Here Diffu}; and Conu}; are the diffusive and convective terms of the u-momentum equation
at the nth time level at (i, j)th cell. Subscripts t and b correspond to top and bottom middle
positions of the u-momentum cell, respectively. Therefore, p; and py, stand for pressure at top and
bottom middle positions of the u-momentum cell, respectively. The diffusive terms are discretized
centrally as

n

2 n n
0 u?, =2ut. 4ult
Dol T o(sx?) (24)

ox2 (9x)2

2 n AN
Ou Uiy 2wt

ij 0(5y* 25
a—yZ— (5)7)2 + (y) (25)

A central-difference formula is used for the mixed derivative 0”u /0x0y in uniform grid.

In the present scheme, as mentioned earlier, the convective terms are differenced with a combi-
nation of central differencing and second-order upwind differencing schemes, as explained in detail
in [20, 25].

Thus, finite-difference form of the u-momentum equation is given by

ou? uP—ul  ury—wig,
Ez(l_ﬁ) 5xl+ﬁ ¢ — 1Pui (26)
ou? u? —u? -
T=a-pt b+ﬁ”t‘f’m5yub¢ub @7)
a — p—
(;tyv —(1-p) Uty 5yMbUb +ﬁvt¢ut5yvb¢ub (28)

where f§ is a combination factor that is determined from the stability (see Section 4.5). With =0
the scheme becomes central differencing and with f=1 it is a second-order upwind difference
scheme.

Similarly, the finite-difference representation for the momentum equation in the y-direction,
Equation (14) is

n+1 n n n
Vij Vi 1 Pij = Pij41 "
- +Ved, (29)
ot fo(xli) = fi(xli) oy
where

Vedt = LDiff vt —Conv? (30)

ij = Re ij ij
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Here, Diff vfj and Con v{lj are the finite-difference representation of the diffusive and convective
terms of the v-momentum equation at the nth time level at the cell (i, j). The diffusive and
convective terms in the v-momentum equation are differenced similarly. For representing the v-
momentum convective fluxes, the same criteria have been employed as those in the u-momentum

equation.

4.3. The Poisson equation for pressure

The Poisson equation for pressure is derived by combining the discretized form of the momentum
and continuity equations [20]. Proceeding as in Maikap et al. [25], the final form of the Poisson
equation for pressure is as follows:

(A+B+C+D)pli—Aplyy;—Bp! |+ (F—E—-D)pl_|+(E—F—C)pl,

HEWP 41 j1— Pip1j— ) HF o =Pl )

_ Div?j k(L —x) Ucdfj —Ucd;’_lj Vcdl’.’j —Vcdl’.’j_1 31)
ot ! ox (f2(xli) = f1(xl;))oy

Here Div}; is the finite-difference representation of the divergence of velocity field at cell (i, j).
The detailed derivation of the Poisson equation for pressure is omitted here. The expressions for
A,B,C,D, E,F are as follows:

K2(1—x?)(1—xI?) K2(1—x2 (1—xI?)
A= L L2 = ! ! 32
(6x)? (6x)2 (32)
c ! D, E=G( l)k2(1—xf)(1—x1§) (33)
= = ’ = xi7 j
(oGl — Fi (1) (87)2 YT by
kK2(1—x% )(1—xI?
F:G(xi_l’ylj) ( xl—l)( X z) (34)

40x0y

We note here, that an advantage of using MAC cell, is that the pressure boundary condition is
not needed at the boundaries where the velocity vector is specified, since the domain boundaries
are chosen to fall on velocity nodes. For the cells adjacent to the upper wall (y=1), we get from
the v-momentum equation

DLy = Pl U2l — f1(xl;)}oy Ved, (35)
Therefore, the Poisson equation for pressure, for the cells adjacent to the upper wall (y=1), is
(A+B+D+E—F)pl;+(E=A)p};—(B+F)p/_|;+(F—E=D)p};_,
FFPI .y +LaCel) — fi@l)18y (E — F) Vedl; — Ep, i
+ 2 xliv) = fiGxeligDISYEVed] ;= [ fa(xli—1) — fi(xli—)16y F Ved]_y

Div}; , Ued); —Ucd;_,; Ved;
=— +k(1—xI7) - (36)
ot ox Oy (fa(xli) — fi(xli))
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where p;’j is the pressure located at the cell centre inside the flow domain. The Poisson equation
for pressure for the cells adjacent to the inlet boundary at x =—1 may be expressed as

(A+C+D)pi;—Apiy;—Dpi;_ 1 —Cpjj4

Div?,
=— L pk(1—xI?) (37)

Ucd;’j Vcd?j — Vcd;’j_1
ot +

ox oy

Similarly, the Poisson equations for pressure for the cells adjacent to the lower wall (y=0) and
outlet boundary (x =1) are obtained. The Poisson equation for pressure has been solved iteratively
by the successive over-relaxation (SOR) method. The value of the over-relaxation parameter
depends on the chosen number of grid points. The choice 1.5 is found convenient for the grid size
used here.

4.4. Pressure and velocity corrections

For computation involving a large number of grid points, a very large number of iteration steps
would be needed for satisfactory level of convergence (here the tolerance used for convergence
of the SOR iterative scheme is 0.5 x 1073). To reduce the computation time for each cycle, the
number of iterations in the SOR iteration scheme is kept limited (say, about 20 iterations). However,
convergence of the solution for the pressure equation cannot be expected with such a small number
of iterations. Therefore, the velocity field obtained after solving the momentum equations using an
already known inaccurate pressure field may not satisfy the continuity equation. This necessitates
a corrector stage. In this stage pressure and subsequently velocity field are corrected, in the sense
that they would satisfy the continuity equation more accurately.

This second stage starts with computing the divergence of velocity field for each cell. If it is
found greater than a specified tolerance at any cell in absolute sense, pressure is corrected for each
cell in the flow field. The velocity components at the sides of the cell are then adjusted.

The details of the derivation of pressure and velocity correction formulae are omitted here. The
final form of the pressure correction formula is

Py = Pij T ©20pij (38)
where p;‘j is obtained after solving the Poisson equation, w>(<0.5) is an under-relaxation param-
eter and

Div

— i 39
St(A+B+C+D) (39

opij=
where Divj‘j is the value of the divergence of velocity field at the cell (i, j) obtained after solving

the Poisson equation for pressure. The velocity correction formulae are

wri_ o K(=xD)otop;

ij M ox (40)

k(1—x2_)otdp;;

+1 —1 L]
u?fljzu;’llj_ léx 41)

Otopi;

o =+ - (42)

! (f2(xli) = f1(xl;)oy
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n+l _ OLopij

ij—1= Vij—1 (f2(xli) = f1(xl;))oy w

v

*

where u?;, ujllj, v;*j, v;;_, represent the updated velocity field obtained after solving the Poisson

ij
equation for pressure.
We note here that the process is iterative since when one cell is adjusted its neighbours are
affected. The iteration is carried out by sweeping the mesh columns from left to right starting with

bottom row and working upwards.

4.5. Stability restriction

To make the finite-difference scheme numerically stable, certain restrictions are imposed on the
mesh sizes ox, dy and also on d¢. The time step is governed by two restrictions. The first restriction
is related to the convection of the fluid, requiring that the fluid cannot move through more than
one cell in one time step. Therefore, the time step must satisfy the inequality

ox O
51<Min [_", —y] (44)
lu| |v] ij

where the minimum is in global sense. Secondly, momentum must not diffuse more than one cell
in one time step. This condition, which is related to the viscous effects, according to Hirt’s stability
analysis implies

se<Min| R 020" 45)
<Min| ———
2 (6x2+6y?) ij

Denoting the right-hand side of Equation (44) by 6¢; and the right-hand side of Equation (45) by
oty, we find that both the inequalities are satisfied by taking the time step o as

St =aMin(dty, 6tp) (46)

Here a(<1) is a relaxation factor that lies in the interval [0.2, 0.4].

4.6. Numerical algorithn

One complete calculation cycle comprises the following steps:
Stage I:

(a) Velocities u?j and v}'. are initialized at each cell (i, j). This is done either from the results
of previous cycle or from the prescribed initial conditions.

(b) Time step (dt) is calculated from stability criteria as explained above.

(c) The Poisson equation for pressure is solved to get the intermediate pressure field ( plfkj) using
the velocities u?j and vfj of the nth time step.
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(d) The momentum equations are solved to get intermediate velocities u?‘j and v;“j in an explicit
manner using the velocities ul’.‘j, vl."j and pressure ( p;‘j) as found from the solution of the
Poisson equation for pressure.

Stage 2:

(e) The maximum cell divergence of velocity field is calculated and is checked with the
prescribed tolerance. If satisfied, steady-state convergence or limiting non-dimensional time
criteria is checked for whether to stop the calculation. If the maximum divergence is not
satisfactorily low, it becomes necessary to go to step (f).

(f) The pressure at each cell of the flow domain is corrected and subsequently the velocities of
that and left and bottom neighbouring cells are adjusted to get u;’;rl, vfjH and pl"j Then

step (e) is again performed.

This completes the necessary calculations for advancing the flow field through one cycle in time.
The process is to be repeated until steady-state convergence or limiting non-dimensional time is
achieved.

4.7. Implementation of the numerical algorithm

For implementation of the finite-difference scheme for obtaining numerical solution, a grid inde-
pendence study is made in two stages. First, at Re =600, u-velocity values at different ordinates
in a straight channel are compared with the exact solution as shown in Table I.

Table I shows comparison of exact values of u-velocity with that of the computational values
corresponding to different grid sizes for a long straight channel. Next, results for a locally expanded
channel for different grid sizes are computed and shown in Table II, which shows that # and v
velocities are in good agreement in different grid sizes. It indicates that the results for the grid
size 100 x 50 are reasonably good, at low Reynolds numbers. However, the actual computations
have been carried out on a 200 x 100 uniform grid and all the computations at Reynolds numbers

Table 1. Results of different grid sizes for a long straight channel at Re =600.

Grid Property Y—0 0.1 0.3 0.5 0.7 0.9 1
100 x 50 u 0 0.08994 0.20987 0.24985 0.20988 0.08995 0
200 x 100 u 0 0.08997 0.20989 0.24987 0.20994 0.08998 0
Exact solution — u=Y —Y? 0 0.09000 0.21000 0.25000 0.21000 0.09000 0
Table II. Results of different grid sizes for a locally expanded channel at
Re=2000 with Xo=8,M =5, h=1 at X=0.
Grid Property Y—>-1.0 —0.43 0.20 0.83 1.46 1.76 2.0
100x50 u 0 0.03163 0.11380 0.10851 0.02856 0.01238 0
200x 100 u 0 0.03168 0.11387 0.10858 0.02857 0.01232 0
100x50 v 0 —0.00312  —0.00195 0.00401 0.00307 0.00101 0
200x 100 v 0 —0.00316  —0.00198 0.00403 0.00302 0.00107 0
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:495-518
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Re>3000 have been performed using 400 x 200 grid points. This is so because at higher Reynolds
numbers, 200 x 100 grid is not capable of capturing all the flow-field features.

5. RESULTS AND DISCUSSION

In order to get an idea of grid error in the computed solutions, we computed solution for flow in a
typical channel with expansion, given by Equation (9) with parameter values Xo=8, h=—1, for
400 x 200 and 200 x 100 grid points, at Reynolds number Re =550, under no external magnetic
field.

Figure 4 shows a comparison of the stress distribution on the upper and lower walls of the channel
taking mesh spacings dx =0y =0.005 and 0.01, respectively. The agreement is very good. This
supports the view that the computations with 200 x 100 grid points ought to be quite satisfactory.

The corresponding streamlines are shown in Figure 5. The flow is asymmetric and separates
from both the walls. A small eddy is seen attached to the lower wall. From these comparisons,
we expect that the computed results with 200 x 100 uniform grid ought to be quite satisfactory at
relatively low Reynolds numbers.

T
lower wall (grid 400x200)

Wall vorticity

Figure 4. Wall shear stress distribution at Re=550, M =0 for 400 x 200 and 200 x 100 grid points.

T
400x200 ........
i\ 200x100 —

-20 -15 -10 -5 0 5 10 15 20

Figure 5. Comparison of streamlines at Re=550, M =0 for (a) 400 x 200 grid
points and (b) 200 x 100 grid points.
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Figure 6. Streamlines for Re =550, M =1.5.
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Figure 7. Distribution of r.m.s v-velocity on the central line of the channel corresponding
to Hartmann numbers M =0, 2 and 5.

The effect of a transverse magnetic field corresponding to Hartmann number M =1.5 on this
flow is shown in Figure 6. We see that, as a result of the applied transverse magnetic field, the flow
has turned symmetric and that the small eddy at the lower wall in Figure 5 has disappeared. Similar
behaviour has been observed at higher Reynolds numbers, which is discussed in the following.

For the above symmetric channel expansion, computed solution in the absence of applied external
transverse magnetic field (M =0) shows symmetric unseparated flow for Reynolds numbers in
the range Re<<500. Separated asymmetric flows are found to occur in the Reynolds number range
500<Re<1100, the flow separating from both the walls of the channel. For Re>1100, the flow
is asymmetric and separates only from the upper wall, there being no separation from the lower
wall, that is, the flow attaches to the lower wall. An eddy is formed in the expansion region of
the upper wall, its size growing larger with increasing Reynolds number. This is in conformity
with corresponding results for the case of symmetric channels with sudden expansions studied by
earlier authors referred to in Section 1.

As a measure of asymmetry, we have calculated the root-mean-square (r.m.s) v-velocity on the
central line of the channel for values of Hartmann numbers M =0,2 and 5 at different Reynolds
numbers presented in Figure 7.
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Figure 9. u-Velocity profiles for different Hartmann numbers at Re=2000:
(a) M=0; (b) M=2; (c) M=5; and (d) M =8.
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Figure 10. Distribution of shear stress on (a) upper and (b) lower walls for different values
of Hartmann number M at Re=1250.

If the flow in the channel be symmetric, the r.m.s. of the v-velocity on the central line of the
channel should be zero. From Figure 7, it is clear that for M =0 the flow becomes asymmetric
(indicated by a non-zero value of the r.m.s velocity) after a certain Reynolds number. This asym-
metry almost disappears when the strength of the magnetic field M is increased to 5, in this case.
Comparing the r.m.s v-velocity curves, it may be noted that the flow in the case M =2 is less
asymmetric than that in the case M =0.

Figure 8 shows the velocity profiles for different values of M at the station X =0 for Re =2000.
It may be seen that for M =0, the flow separates only at the upper wall and the corresponding
velocity profile is asymmetric. Moreover, as the Hartmann number M increases, the velocity profiles
gradually become symmetric and the separation disappears. It is evident from this figure that the
peak value of the u-velocity decreases with increase in the value of the Hartmann number M.

Figures 9(a)—(d) show a series of u-velocity profiles at Re=2000 at different positions of the
channel for Hartmann numbers M =0, 2, 5 and 8, respectively. Figure 9(a) shows that for M =0 the
flow separates at the upper wall in the expansion region of the channel, but there is no separation
at the lower wall. Figure 9(b) shows that for M =2 the flow separates at both the upper and lower
walls. In Figure 9(c), it is seen that for M =35, the flow separates at both upper and lower walls.
Velocity profiles are now much more symmetric about the centre line (Y = %) of the channel. For
M =8 at Re=2000, since there is no point of inflexion on the u-velocity profiles, as shown in
Figure 9(d), we conclude that the flow separation completely disappears. It may also be noted from
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1
(© —15 -10 -5 0 5 10 15

Figure 11. Streamlines at Re=1100 for Hartmann numbers: (a) M =0; (b) M =2; and (¢) M =3.3.

Figure 9(d) that the profiles become symmetric. This indicates that the flow becomes symmetric
with a sufficient increase in the strength of the magnetic field.

5.1. Wall vorticity

Distribution of shear stress on the upper and lower walls for different values of Hartmann number
M at Re=1250 is shown in Figures 10(a) and (b). From Figure 10(a) it appears that as the strength
of the magnetic field M increases, the length of the separation zone decreases and ultimately no
separation occurs. Similar is the case for the shear stress distribution on the lower wall, shown in
Figure 10(b).

5.2. Streamlines and vorticity contours
Streamlines of the flow for different values of the Hartmann number M at Reynolds number Re =
1100 are shown in Figures 11(a)—(c). Figure 11(a) shows that for M =0, there is a recirculation
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Figure 12. Vorticity contours of the flow at Re =2000, for Hartmann
numbers: (a) M =0; (b) M=2; and (c) M =5.

zone near the upper wall in the expansion region of the channel, but no corresponding recirculation
zone near the lower wall. The flow remains attached to the lower wall. Therefore, inspite of the
fact that there is geometric symmetry, the flow is asymmetric at Re=1100. Comparing Figures
11(a) and (b) it may be observed that the recirculation zone for M =2 is smaller than that for
M =0. Further, from Figure 11(c) it is clearly seen that the flow becomes symmetric at M =3.3
and the recirculation zone completely disappears.

Figures 12(a)—(c) show the vorticity contours of the flow for different values of the Hartmann
number M at Re=2000. These vorticity contours show that there is flow asymmetry for M =0
and 2, while for M =5 the vorticity contours are symmetric, so that the flow also turns symmetric
about the channel central line.

The streamlines for flow in the channel at Reynolds number Re =3000 and Hartmann number
M =0 are shown in Figures 13(a)—(c) at three different non-dimensional times ¢ =1000.45, =
1207.96, and at r=1415.48, respectively. Eddies formed in the upper-wall expansion region
indicate large areas of recirculating zone. It may be observed that the recirculating zone slowly
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Figure 13. Streamlines for Hartmann number M =0 and Re=3000 at different non-dimensional times:
(a) t=1000.45; (b) t=1207.96; and (c) t =1415.48.

reduces in size for increasing non-dimensional time. The flow is asymmetric with respect to the
central line Y =% of the channel and is slightly unsteady. However, after sufficiently large time
the flow is found to turn steady, for example, for non-dimensional time ¢#>1415.

Here, a flow is considered steady if it satisfies the condition over all the mesh points

max
iJj

where ¢ is a prescribed small positive quantity. In our computations, we have taken e=0.5x 107,
The streamlines at Reynolds number Re=3000 and Hartmann number M =5 are shown in
Figures 14(a)—(c) at non-dimensional times t =603.13,¢=810.65, and r =1018.2, respectively. No
recirculating zone may be seen near the upper wall. Small eddies formed near the lower wall in
the expansion region may be seen in these figures showing the flow to be asymmetric.
Thus, the flow becomes steady and symmetric as the intensity of the applied magnetic field
increases. Strength of the magnetic field needed to arrest separation depends on the aspect ratio

ou

ot

a_v
ot

)

j| <e (47)
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Figure 14. Streamlines for Hartmann number M =5 and Re=3000 at non-dimensional times:
(a) t=603.13; (b) t=2810.65; and (c) r=1018.2.

(the ratio of the amplitude of the wall expansion to the semi-wavelength of it) and on the Reynolds
number.

5.3. Pressure: central line, upper and lower walls

The pressure distributions along the upper wall, central line and lower wall of the channel at
Re=3000 for different Hartmann numbers M =0, 5, and 10 are shown in Figures 15(a)—(c).

In Figure 15(a), we see that for Hartmann number M =0, as the flow approaches the expansion
region of the channel, the upper wall pressure slightly deceases and attains a minimum value in
the downstream region. The upper wall pressure rapidly decreases and attains a minimum value
in the downstream region for Hartmann number M =5. The upper wall pressure deceases more
rapidly and attains a minimum value in the downstream region for Hartmann number M =10. It
is interesting to see that as the Hartmann number increases, the upper wall pressure decreases
rapidly and attains minimum values in the downstream regions. Similar is the case for the pressure
distributions on the central line and lower wall, as shown in Figures 15(b) and (c).
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Figure 15. Pressure distribution for Hartmann numbers M =0, 5, 10 at Re =3000: (a) upper
wall; (b) central line; and (c) lower wall.

6. FLOW AT HIGHER REYNOLDS NUMBERS

In the present work, we assume the flow to be laminar. Transition experiments conducted by
Patel and Head [26] show that the plane Poiseuille flow undergoes transition to turbulence for
Reynolds number as low as 1000, the Reynolds number being formed using the channel centreline
velocity and half the channel width. It may be noted that according to Equation (10) the centreline
velocity in our work is U/4,(not U) and h* is the channel width used to define the Reynolds
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number as Re=Uh*/v. Thus, the experimental value of the transition Reynolds number, in our
notation, would be 8000 (=1000 x 4 x 2). Keeping this in mind, our computations are at relatively
low Reynolds numbers. As the Reynolds number increases, the flow takes a long time to reach a
steady state, if at all it reaches a steady state. The two-dimensional flow shows signs of instability.
Determination of the precise Reynolds number needs further investigation. Owing to this we have
not computed solution for higher Reynolds numbers.

7. CONCLUSION

The flow of a viscous incompressible electrically conducting fluid through a long channel with
local symmetric expansion has been investigated for several small values of the Hartmann number.
For increasing Reynolds number, the flow becomes asymmetric and separates from both the walls
for a certain value of the Reynolds number in the absence of a transverse magnetic field. With
further increase in Reynolds number, the flow separates from one of the walls and remains attached
to the other wall. A recirculating zone is formed near the wall from which the flow separates,
whose size increases with increase in the value of the Reynolds number. However, with increase
in the strength of the magnetic field the flow becomes symmetric again and the flow separation
disappears. The strength of the magnetic field needed to arrest separation depends on the geometry
of the walls and on the Reynolds number. At relatively higher laminar Reynolds numbers, the
flow turns slightly unsteady and takes much longer time to reach a steady state. Application of
a transverse magnetic field of suitable strength is likely to suppress perturbations and leads to
a higher transition Reynolds number. Thus, a transverse magnetic field has a stabilizing effect
in controlling flow separation and unsteadiness in the channel, as also in delaying transition to
turbulence.
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